
A method for the calculation of spin susceptibilities of itinerant systems for finite temperature

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 8097

(http://iopscience.iop.org/0953-8984/4/41/005)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 00:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phy..: Condens Matter 4 (1992) 8097404. Printed in the UK 

A method for the calculation of spin susceptibilities of 
itinerant systems for finite temperature 

B Kirchner, W Weber and J Voitlander 
lnstitut fir Physiblische Chemie, Univmitit Miinchen, Sophienstme 11,8wO 
Miinchen 2, Federal Republic of Germany 

Received 8 April 1992, in final form 27 July 1992 

AbstmcL lhe temperature dependence of the magnetic properties of itinerant electron 
systems is mainly due U) the excilation of spin fluctuations. In order 10 describe the 
energy of the spin fluctuation field, we use a functional that treats the fluctuation modes 
in the static limit and that includes the energy of the coupling between different modes 
in a lwl. i.e. wavevector-independent, way. We derive formulae for the free energy 
and the susceptibility of the system along the lines of the Murala-Doniach approach. 
Our energy functional is quite general, going beyond the Ginburg-landau expansion. 
It is possible to deal with arbilrary fluctuation amplitudes. Furlhermore. the energy 
functional can be completely derived from first-principles calculations for the ground 
state of the system. Thermodynamic properlies may thus be lraced back to details of the 
band structure. We apply our method to the calculation of the temperature dependence 
of the susceptibility of Pd metal. 

1. General theory 

With the present state of spin fluctuation theory, magnetic properties of weakly 
correlated systems can be calculated from ground-state data obtained by band- 
structure calculations [I]. In this section, we briefly summarize the spin fluctuation 
theory first presented by Murata and Doniach 121. The presentation is similar to a 
paper of Wagner [3]. 

Assuming isotropy of the system, the Hamiltonian may be written 

Here M indicates the homogeneous macroscopic magnetization and m(r)  the 
thermally induced fluctuations of the magnetization. Local mode-mode coupling 
is exactly taken into account through a local energy functional in the first term of (l), 
while non-local effects are approximated by a quadratic form in the fluctuating field, 
with the inverse susceptibility as a coupling function. 

The system is completely characterized by the canonical partition function 

(2) = qm] e-BWM.(m)) 
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or, equivalently, by the free energy 

F = - k , T l n Z .  (3) 

In order to obtain analytical expressions. the Hamiltonian is approximated by a 
quadratic form in the magnetic fluctuations: 

3 

31, = E / / d 3 r d 3 d n i ( r  -r')mi(r)mi(r') . (4) 
i=l 

The Peierls inequality sets an upper boundary for the free energy: 

F < F" + (31 -E,) 
= /d3r ( E ( M  4- m(r))) - 

The Fourier-transformed quantities 

mi(.) = Cm .e+ (6) 
1 

4-1 V 
ni(v)  = - C S I ~ , ~ ~ ' ~ '  

4 4 

were used in (5 ) ,  with V as the volume of the macroblock; ( )  denotes the statistical 
mean with respect to the distribution function ( l/Z,)e-@7co. 

Because of the translational invariance of WO, the average of an arbitrary function 
of m is independent of the position vector T .  It will be shown later that the result 
of the averaging process depends only on the three components of the mean-square 
fluctuations (mf). 

can be found by minimizing the right-hand side of 
(9, yielding 

The optimal frequencies 

The mean square of the fluctuations (mi) is related to the nq,; through 

Equations (7) and (8) determine the quantities (m!). To restrict the summation in 
(S), a cutoff wavevector is introduced in practical calculations. This is a shortcoming 
of the static approximation, which is based on the high-temperature limit k B T / h  
for the omupation number of the fluctuation modes. 

In what follows we identify the optimized right-hand side of (5) with the free 
energy F. The inverse susceptibility of a paramagnetic system is obtained by taking 
the second derivative of F with respect to M at M = 0. Partial derivatives of F 
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with respect to ilq,< vanish due to the minimization procedure, and the expression 
for the inverse susceptibility reduces to 

The subscript i indicates a component of the magnetization. 
The functional integration in the thermal average of the energy functional 

( E ( M + m ) )  poses a difIicult problem. Seven1 authors [16] use a Landau expansion 
of E ( M ) ,  since the Gaussian average of any power of mi can be expressed by a 
power of (mf). As mentioned before, data for E ( M )  can be obtained from band- 
structure calculations for various values of M with the lixed-spin moment method 
(FSM) [7,8]. ?b transform the numerical E ( M )  data to the form of a Landau 
polynomial, fitting procedures have to be applied. The fit coefficients, however, 
depend strongly on details of the graph of E ( M )  and, furthermore, on the M range 
over which it is fitted The coefficients of low order are not stable, if higher orders for 
the expansion are taken into account. In the following we present an exact formula 
in which the multidimensional phase-space integration in ( E ( M  + m)) is replaced 
by a threedimensional integral. 

2. Exact treatment of the averaging process 

The general formula for the averaged energy density is given by 

( E ( M  + m(01)) = j ~ [ m l  E ( M  t m(o))e- PHo(M.Im)), (10) 

Because of translational invariance of the mean value, evaluation at the origin of 
space does not mean any loss of genenlity. We write the magnetic field in its Fourier 
representation 

M + m(r = 0) = M + Emq = M t ZCS, (11) 
P P I  >U 

where 

mq = xq + iy,. 

Since m(r)  is real, only the real parts of the Fourier coefficients appear in equation 
(11). The term C,,,o denotes summation over the positive semispace. In these 
terms we get 

where integrals over Y,,~ can immediately be eliminated. 
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The following relation holds for any function f: 

Here (z2)  means 

The validity of (13) can be shown by induction over the number of integration 
variablcs. lhking the integrand of (12) successively as a function of E, zg,;, with 
i=1,2,3, and applying (13) three times, we get 

The mean-square fluctuations of component i are given'by 

It is obvious from equation (14), that the expectation value ( E ( M  + m)) depends 
only on the three components of the mean-square fluctuations (mt) and on M. 
Equation (9) can therefore be rewTitten: 

Using equation (14) it can be shown that 

For isotropic systems E depends only on IMIZ. Hence the second term of equation 
(16) vanishes for the case M = 0, Le. After 
transformation to polar coordinates an expression for the temperature-dependent 
inverse susceptibility is obtained from equations (14) and (16): 

for a paramagnetic system. 
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where 

( 7 2 )  = (m?) = (m;) = (mi). 

To calculate (d), we insert equations (7), (16) and (17) in (8). When the wavevector 
sum is repIaced by an integral, we finally obtain 

The cut-off wavevector qc is the only free parameter of the theory and has to be 
adjusted to experimental data. The wavevector-dependent susceptibility for T = 0 is 
accessible, like the E( M )  data, from band-structure calculations or from neuuon- 
scattering measurements. 

For a given temperature T # 0, equations (18) and (19) can be solved for x-l 
and (m2) by an iterative procedure. Alternatively, and easier to implement, a set of 
(m2) values can be chosen to calculate the corresponding x-'((m2))  and T((mZ)) .  

3. Results 

Formulae (18) and (19) were taken to calculate the temperature-dependent spin 
susceptibility of Pd metal. The experimental susceptibility of Pd against temperature 
shows a small maximum at about 85 K [9,10]. In our theory, this maximum turns out 
to correspond to a flat minimum of the function 

E " ( M )  + 2 E ' ( M ) / M  (20) 

at small M values (see figure 1). 
Former approaches [14] used a Landau expansion of E ( M )  to-calculate the 

expectation value (14). To reproduce a maximum of the susceptibdity curve, the 
energy function has to be expanded up to sixth order in M. The coefficient of M2 
has to be positive, that of M4 negative, and that of M6 positive. In contrast to 161, 
our own attempts to fit the E ( M )  data in this way failed because the coefficients of 
the fitting polynomial depend too strongly on the range of the fit and the order of 
the expansion. Nor could the sign of the coefficients be determined reliably. Thus 
calculations on Pd obtained with the Landau expansion method suffer from a high 
degree of arbitrariness. 

In our method an arbitrary parametrization of (20) can be used, because no 
assumptions on function (20) were made. We chose a parametrization of E ' ( M )  
with a cubic spline function in order to evaluate (20) and to perform the integration 
in (U). To this end the magnetic field B(A4) = E ' ( M )  was taken from our band- 
structure program. 

The self-consistent band-structure calculations were carried out with the 
augmented spherical wave (ASW) formalism [ll] under the constraint of a k e d -  
spin moment [7,8]. In order to evaluate (19) data for the wavevectordependent 
susceptibility at 0 K were taken from ab inifio calculations performed by Stenzel and 
Winter 112-141. 

Figures 2 and 3 show the E( M) as well as the B( M )  graphs for several lattice 
parameters. From the latter function we obtain the dependence x-'((m2)) using 
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Flgure 1. Integrand B'( M )  + 2B( M ) / M  'against magnetizalion M. The arrows 
indicate small minima responsible for the maxima in the temperaturedependent 
susceptibility. 

equation (18). In a second step we apply (19) to get x-'(T).  The free parameter 
qc affects only the relation between (m') and T by formula (19). For a fixed 
value of (mZ), the corresponding temperature decreases with increasing qc and 
vice. versa. Therefore qc scales the temperature axis, i.e. increasing qc shifts the 
susceptibility curve to lower temperatures. For our calculations we chose a constant 
cut-off wavevector q, in such a way, that we achieved the best possible correspondence 
between experimental and theoretical results for T > 150 K. 

Figure 2. Magnetization-dependent ground-state energy per Pd atom (a :  laltice 
parameter). 

The ~(7') plots for various lattice parameters and the experimental results are 
given in figure 4. The equilibrium lattice parameter provided by the ASW program 
is 7.42 au Note that our classical spin fluctuation model fails in the limit T + 0. 
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Figure 3. Magnetic field B against magnetization M .  

Hence the slopes of the susceptibility curves are finite at T = 0 K, in contrast to the 
third law of thermodynamics. By comparing the results with experiment two major 
shortcomings are evident These are as follows. 

IO 

Figure 4. Tempera(ure-dependent susceptibility for lattice paramelen 7.333, 7.4. 7.425 au 
Corresponding qc: 0.73, 0.63, 0.53 x2rrfa. Experimental mUlU [IO]. 

First, the calculated susceptibility values are too small, and second, the maximum 
of the susceptibility appears at too low temperatures. We believe that the first 
discrepancy has its origin in the non-relativistic treatment of the band-structure 
calculations. It is well known [12], that relativistic effects shift the d bands to higher 
energies. This results in a considerable increase of the exchange enhancement, on 
account of a moderate increase of the density of states at the Fermi level. 

With regard to the second deficiency we would like to emphasize that the cut-off 
wavevector should be temperature dependent. In the classical treatment the cut-off 
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wavcvector has to be introduced as a boundary for the highest occupied fluctuation 
modes. This limit should increase with temperature. A temperature-dependent qc 
will shift the maximum of the susceptibility to larger temperatures without affecting 
the curves in the high-temperature regime. Better agreement of theoretical and 
experimental curves might then be achieved. In addition, when qc is set proportional 
to F, y > 0, the susceptibility curves will start with a horizontal slope at T = 0 K, 
as the thud law of thermodynamics requires. 

4. Summary 

We treated the susceptibility of itinerant electron systems, for which spin fluctuations 
are the predominant thermal excitations. Our methcd starts with the model 
Hamiltonian from (I), and applies an approximation for the free energy in terms of a 
quadratic form with renormalid mode frequencies. Without further approximations 
a method for the calculation of the susceptibility of a paramagnetic system results. 
The only data required is the magnetization-dependent ground-state energy and the 
q-dependent susceptibility for T = 0 K Both are accessible from band-structure 
calculations. The small curvature of E( M) for low M values in Pd metal is a critical 
test for the quality of our method. 

With the exception of equation (18), the formalism is quite general and also 
applicable to itinerant ferromagnetic systems. 
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